Title: | The Three Parameter Weibull Distribution |
---|---|
Description: | Density, distribution function, the quantile function, random generation function, and maximum likelihood estimation. |
Authors: | Atchanut Rattanalertnusorn [aut, cre] |
Maintainer: | Atchanut Rattanalertnusorn <[email protected]> |
License: | GPL-3 |
Version: | 0.1.0 |
Built: | 2025-03-07 03:48:26 UTC |
Source: | https://github.com/cran/tpwb |
Distribution function plot of the three-parameter Weibull distribution with specified shape
, scale
and location
.
cdfplot(x, shape, scale, location)
cdfplot(x, shape, scale, location)
x |
vector of quantiles |
shape |
shape parameter ( |
scale |
scale parameter ( |
location |
location parameter ( |
Distribution function plot of the three-parameter Weibull distribution.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
x <- rtpwb(100,1.5,2,1) cdfplot(x,1.5,2,1)
x <- rtpwb(100,1.5,2,1) cdfplot(x,1.5,2,1)
This function for estimating parameter of the three-parameter Weibull distribution.
mlewb(x, shape, scale, location)
mlewb(x, shape, scale, location)
x |
vector of quantiles. |
shape |
shape parameter, where |
scale |
scale parameter, where |
location |
location parameter, where |
the estimated shape, scale and location values of the three-parameter Weibull distribution.
the result of this function may produce a Warning message, but not effect to the estimated parameter.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
x<- rtpwb(1000,2,3,1) #n=1000 large sample mlewb(x,2,3,1) x<- rtpwb(50,2,3,1) #n=50 medium sample mlewb(x,2,3,1) x<- rtpwb(10,2,3,1) #n=10 small sample mlewb(x,2,3,1)
x<- rtpwb(1000,2,3,1) #n=1000 large sample mlewb(x,2,3,1) x<- rtpwb(50,2,3,1) #n=50 medium sample mlewb(x,2,3,1) x<- rtpwb(10,2,3,1) #n=10 small sample mlewb(x,2,3,1)
Probability density function plot of the three-parameter Weibull distribution with specified shape
, scale
and location
.
pdfplot(x, shape, scale, location)
pdfplot(x, shape, scale, location)
x |
vector of quantiles |
shape |
shape parameter ( |
scale |
scale parameter ( |
location |
location parameter ( |
Probability density function plot of the three-parameter Weibull distribution.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
x <- rtpwb(100,1.5,2,1) pdfplot(x,1.5,2,1)
x <- rtpwb(100,1.5,2,1) pdfplot(x,1.5,2,1)
Density, distribution function, quantile function, and random generation function
for the three-parameter Weibull distribution with shape
, scale
and location
dtpwb(x, shape, scale, location = 1, log = FALSE) ptpwb(q, shape, scale, location = 1, lower.tail = TRUE, log.p = FALSE) qtpwb(p, shape, scale, location = 1, lower.tail = TRUE, log.p = FALSE) rtpwb(n, shape, scale, location = 1)
dtpwb(x, shape, scale, location = 1, log = FALSE) ptpwb(q, shape, scale, location = 1, lower.tail = TRUE, log.p = FALSE) qtpwb(p, shape, scale, location = 1, lower.tail = TRUE, log.p = FALSE) rtpwb(n, shape, scale, location = 1)
x , q
|
vector of quantiles. |
shape |
shape parameter, where |
scale |
scale parameter, where |
location |
location parameter, where |
log , log.p
|
logical; (default = |
lower.tail |
logical; if |
p |
vector of probabilities |
n |
number of observations. If |
dtpwb
gives the density,
ptpwb
gives the distribution function,
qtpwb
gives the quantile function,
and rtpwb
generates random samples.
If location parameter, , it reduced to the two-parameter Weibull distribution.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
x <- rtpwb(20,1.5,3,1) dtpwb(x,1.5,3,1) dtpwb(x,1.5,3,1,log=TRUE) q <- rtpwb(20,1.5,3,1) ptpwb(q,1.5,3,1 ) ptpwb(q,1.5,3,1, lower.tail = FALSE) q <- rtpwb(20,1.5,3,1); q p<- ptpwb(q,1.5,3,1 ); p qtpwb(p,1.5,3,1) rtpwb(5, 1.5, 3, 0) # the same as rweibull(5,1.5,3) rtpwb(25,0.5, 2, 1)
x <- rtpwb(20,1.5,3,1) dtpwb(x,1.5,3,1) dtpwb(x,1.5,3,1,log=TRUE) q <- rtpwb(20,1.5,3,1) ptpwb(q,1.5,3,1 ) ptpwb(q,1.5,3,1, lower.tail = FALSE) q <- rtpwb(20,1.5,3,1); q p<- ptpwb(q,1.5,3,1 ); p qtpwb(p,1.5,3,1) rtpwb(5, 1.5, 3, 0) # the same as rweibull(5,1.5,3) rtpwb(25,0.5, 2, 1)